Pulvinar inactivation disrupts selection of movement plans.
نویسندگان
چکیده
The coordinated movement of the eyes and hands under visual guidance is an essential part of goal-directed behavior. Several cortical areas known to be involved in this process exchange projections with the dorsal aspect of the thalamic pulvinar nucleus, suggesting that this structure may play a central role in visuomotor behavior. Here, we used reversible inactivation to investigate the role of the dorsal pulvinar in the selection and execution of visually guided manual and saccadic eye movements in macaque monkeys. We found that unilateral pulvinar inactivation resulted in a spatial neglect syndrome accompanied by visuomotor deficits including optic ataxia during visually guided limb movements. Monkeys were severely disrupted in their visually guided behavior regarding space contralateral to the side of the injection in several domains, including the following: (1) target selection in both manual and oculomotor tasks, (2) limb usage in a manual retrieval task, and (3) spontaneous visual exploration. In addition, saccades into the ipsilesional field had abnormally short latencies and tended to overshoot their mark. None of the deficits could be explained by a visual field defect or primary motor deficit. These findings highlight the importance of the dorsal aspect of the pulvinar nucleus as a critical hub for spatial attention and selection of visually guided actions.
منابع مشابه
Effects of Pulvinar Inactivation on Spatial Decision-making between Equal and Asymmetric Reward Options
The ability to selectively process visual inputs and to decide between multiple movement options in an adaptive manner is critical for survival. Such decisions are known to be influenced by factors such as reward expectation and visual saliency. The dorsal pulvinar connects to a multitude of cortical areas that are involved in visuospatial memory and integrate information about upcoming eye mov...
متن کاملElectrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner
The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul w...
متن کاملDeficits in reach target selection during inactivation of the midbrain superior colliculus.
Purposive action requires the selection of a single movement goal from multiple possibilities. Neural structures involved in movement planning and execution often exhibit activity related to target selection. A key question is whether this activity is specific to the type of movement produced by the structure, perhaps consisting of a competition among effector-specific movement plans, or whethe...
متن کاملPondering the Pulvinar
While the function of the pulvinar remains one of the least explored among the thalamic nuclei despite occupying the most thalamic volume in primates, it has long been suspected to play a crucial role in attentive stimulus processing. In this issue of Neuron, Zhou et al. (2016) use simultaneous pulvinar-visual cortex recordings and pulvinar inactivation to provide evidence that the pulvinar is ...
متن کاملQueuing of concurrent movement plans by basal ganglia.
How the brain converts parallel representations of movement goals into sequential movements is not known. We tested the role of basal ganglia (BG) in the temporal control of movement sequences by a convergent approach involving inactivation of the BG by muscimol injections into the caudate nucleus of monkeys and assessing behavior of Parkinson's disease patients, performing a modified double-st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 25 شماره
صفحات -
تاریخ انتشار 2010